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a b s t r a c t

Mixed convective heat transfer of non-Newtonian fluids on a flat plate has been investigated using a
modified power-law viscosity model. This model does not contain physically unrealistic limits of zero
or infinite viscosity as are encountered in the boundary-layer formulation with traditional models of vis-
cosity for power-law fluids. These unrealistic limits can introduce an irremovable singularity at the lead-
ing edge; consequently, the model is physically incorrect. The present modified model matches well with
the measurement of viscosity, and does not introduce irremovable singularities. Therefore, the boundary-
layer equations can be solved by marching from the leading edge downstream as for Newtonian fluids.
The numerical results are presented for a shear-thinning fluid in terms of the velocity and temperature
distribution, and for important physical properties, namely the wall shear stress and heat transfer rates.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction The first is that few authors recognize that a length scale is associ-
Free convection can have significant effects on forced flows over
solid bodies. It can alter the flow field and, hence, the heat transfer
rate and the wall shear stress. Such effects are particularly en-
hanced for high-speed rotating machineries due to their large cen-
trifugal forces. The effect of natural convection is accumulative so
it cannot be ignored even when the flow acceleration is small. The
simplest physical model is a two-dimensional mixed forced and
free convection along a flat plate. Understanding of fundamental
mechanism of this interaction can help to estimate more accu-
rately the heat transfer rate and pumping power for complex
geometries of practical interest in order to prevent unnecessary
burn-out of heated surfaces.

The interest in heat transfer problems involving power-law,
non-Newtonian fluids has grown persistently in the past half cen-
tury. An excellent sequence of lectures on non-Newtonian fluids
was given by Hinch [1]. It appears that Acrivos [2], a frequently ci-
ted paper, was the first to consider boundary-layer flows for such
fluids. Since then, a large number of related papers have been pub-
lished due to their wide relevance in chemicals, foods, polymers,
molten plastics and petroleum production, and other natural phe-
nomena. A complete literature survey would be impractical; a few
references, which can be used as starting points for a more exten-
sive search [3–13], are listed here.

Two widespread mistakes appear continuously in papers study-
ing boundary-layers involving the traditional two-parameter
power-law model of non-Newtonian fluids (see Bird et al. [14]).
ll rights reserved.
ated with the power-law correlation. Due to this length scale,
boundary-layer problems with power-law, non-Newtonian fluids
cannot have simple self-similar solutions. It is nevertheless a com-
mon practice to ignore, without justification, the dependence of
boundary-layer solutions on the streamwise coordinate. It has
been demonstrated in [15] that such a self-similar solution is actu-
ally only valid at the leading edge of the boundary-layer. This sim-
ilarity solution is the required upstream condition at the leading
edge of the flat plate to integrate boundary-layer equations along
the streamwise direction.

The second concern is related to the unrealistic physical results,
introduced by the traditional power-law correlation, that viscosity
either vanishes or becomes infinite in the limit of large or small
shear rates, respectively. This usually occurs at the leading edge of
a flat plate, or along the outer edge of boundary-layers where the
boundary-layer matches with the outer inviscid flow. Thus, tradi-
tional power-law correlations introduce non-removable singulari-
ties into boundary-layer formulations for infinite or zero viscosity.
Without recognizing the cause of such unrealistic conditions, com-
plex multi-layer structures have been introduced by many authors,
for example, Denier et al. [12–13], to overcome certain mathemat-
ical difficulties in order to obtain solutions of a non-physical formu-
lation, or a false starting process has been used to integrate
boundary-layer equations from slightly downstream of the leading
edge in order to avoid the irremovable singularity there [8–9].

A recently proposed modified power-law correlation is
sketched for a number of values of the power index ‘‘n” in Fig. 2.
It is clear that this new correlation does not contain physically
unrealistic limits of zero and infinite viscosities as do traditional
power-law correlations. The modified power-law, in fact, fits mea-
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Nomenclature

C constant
Cf dimensionless shear stress coefficient
D non-dimensional viscosity of the fluid
Gr Grashof number
g acceleration due to gravity
K dimensional constant
L reference length scale of the plate
n non-Newtonian power-law index
Nu Nusselt number
Re Reynolds number
ð�u; �vÞ fluid velocities in the ð�x; �yÞ directions, respectively
(U,V) dimensionless fluid velocities in the (n, g) directions,

respectively
U0 free-stream velocity

T dimensional temperature of the fluid
Tw surface temperature
T1 ambient temperature

Greek symbols
n axial direction along the plate
g pseudo-similarity variable
c shear-rate
q fluid density
m viscosity of the non-Newtonian fluid
m1 reference viscosity of the fluid
a thermal diffusivity
h dimensionless temperature of the fluid
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Fig. 1. Physical model and coordinates.
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sured viscosity data better. The constants in the proposed model
are fixed with available measurements and described in detail in
[15], where the boundary-layer formulation on a flat plate is de-
scribed and numerically solved. The associated heat transfer for
two different heating conditions is reported in [16]. A shear-thin-
ning fluid, whose power-law index is 0.95, slightly different from
Newtonian fluids for which n = 1, was selected in the study of
[15–16]. In [17–19], this analysis is extended to fluids whose
power-law indexes are 0.6, 0.8,1, 1.2 and 1.4 in order to fully dem-
onstrate the effect of non-Newtonian fluids. In this paper, results
for mixed convection of non-Newtonian fluids along a vertical flat
plate using the modified power-law model for shear-thinning fluid
are presented. A similar analysis for natural convection along a ver-
tical heated flat plate appears in [20].

It is known [21] that a length scale exists for mixed convection
boundary-layers for Newtonian fluids due to the interaction of the
forced and the free convections; hence, there is no similarity solu-
tion for mixed convection boundary-layers. On the other hand, the
Nusselt number and shear stress distributions can be well corre-
lated in terms of this length scale for all combination of the Rey-
nolds and Rayleigh numbers since the flows are laminar. This is
not true for non-Newtonian fluids, since the new length scale,
introduced into the formulation by the traditional power-law cor-
relation, becomes the dominant length scale of mixed convection
boundary-layers for power-law fluids. This will be demonstrated
by numerical results presented in Section 3.

2. Formulation of problem

A steady laminar boundary-layer of a non-Newtonian fluid
along a semi-infinite heated flat plate has been studied. The viscos-
ity depends on the shear rate and is correlated by a modified
power-law for shear-thinning non-Newtonian fluids. It is assumed
that the surface temperature of the plate is Tw, where Tw > T1. Here
T1 is the ambient temperature of the fluid and T is the temperature
of the fluid. The coordinate system is shown in Fig. 1.

The equations governing the flow and heat transfer are

@�u
@�x
þ @

�v
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¼ 0; ð1Þ
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where �u; �v are velocity components along the ð�x; �yÞ axes, T is the
temperature, and a is the thermal diffusivity of the fluid. The viscos-
ity is correlated by a modified power-law, which is
m ¼ K
q
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The constants �c1 and �c2 are threshold shear rates, q is the density of
the fluid, and K is a dimensional constant, whose dimension de-
pends on the power-law index n. The values of these constants
can be determined by matching with measurements. Outside of
the above range, viscosity is assumed constant; its value can be
fixed with data given in Fig. 2.

The boundary conditions for the present problem are

�u ¼ �v ¼ 0; T ¼ Tw at �y ¼ 0; ð5aÞ
�u! U0; T ! T1 as �y!1; ð5bÞ

where U0 is the free-stream velocity.
We now introduce the following non-dimensional

transformations:

x ¼
�x
l
; y ¼

�y
l

Re1=2; u ¼
�u

U0
; v ¼

�v
U0

Re1=2;

h ¼ T � T1
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; D ¼ m
m1
; Re ¼ U0l

m1
; Gr ¼ gbDTl3

m2
1

ð6aÞ

where m1 is the reference viscosity, h is the dimensionless tempera-
ture of the fluid, Re is the Reynolds number and Gr is the Grashof
number. The length scale is
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Fig. 2. Modified power-law correlation.
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Substituting variables (6a) into Eqs. (1)–(4) leads to the following
non-dimensional equations
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where Pr is the Prandtl number. The physical meaning of
Gr

Re2 ¼ ‘

U2=ðbDTÞ represents the ratio of the length scale that the non-
Newtonian effect becomes apparent and the length scale that the
natural convection effect grows dominant. For larger Gr

Re2,it takes
shorter distance for the effect of natural convection becomes dom-
inant. The boundary conditions (5) become

u ¼ v ¼ 0; h ¼ 1 at y ¼ 0; ð11aÞ
u! 1; h! 0 as y!1; ð11bÞ

Next the equations are transformed to parabolic coordinates [21]

n ¼ x; g ¼ ŷ

ð2xÞ1=2 ; U ¼ u; V ¼ ð2xÞ1=2v ; h ¼ hðn;gÞ; ð12Þ

in order to remove the singularity at the leading edge, and to min-
imize the variation of the boundary-layer thickness for computa-
tional convenience. Consequently, Eqs. (7)–(9) become
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The correlation (16) is a modified power-law correlation first pre-
sented By Yao and Molla [15]. This correlation describes that if
the shear rate j c j lies between the threshold shear rates c1 and
c2, then the non-Newtonian viscosity, D, varies with the power-
law of c. On the other hand, if the shear rate j c j do not lie within
this range, then the non-Newtonian viscosities are different con-
stants as shown in Fig. 2. This is a property of many measured
viscosities.

Eqs. (13)–(15) can be solved by marching downstream with the
upstream condition satisfying the following differential equations

� g
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which are the limits of Eqs. (17)–(19) as n ? 0. The corresponding
boundary conditions are

U ¼ V ¼ 0; h ¼ 1 at g ¼ 0; ð20aÞ
U ! 1; h! 0 as g!1: ð20bÞ

Eqs. (13)–(15) and (17)–(19) are discretized by a central-difference
scheme for the diffusion term and a backward-difference a scheme
for the convection terms; finally we get a system of implicit tri-
diagonal algebraic system of equations. The algebraic equations
have been solved by a double-sweep technique. In the computation
the continuity equation is directly solved for the normal velocity
component, V. Hence, the truncation errors are O(Dn). The compu-
tation is started from n = 0.0, and then marches downstream to
n = 1000. After several test runs, convergent results are obtained
by using Dn = 2 � 10�9 and Dg = 0.001 near the leading edge from
n = 0.0 to n = 10�6; afterwards Dn is gradually increased by the rela-
tion Dn (new) = 2Dn (old) up to Dn = 0.05.

In practical applications, the physical quantities of principle
interest are the wall shear stress in terms of the skin-friction coef-
ficient Cf and the rate of the heat transfer in terms of the Nusselt
number Nu, which are, respectively,

Cf ð2nÞ1=2 ¼ D
@U
@g

� �
g¼0

; ð21Þ

Nuð2nÞ�1=2 ¼ � @h
@g

� �
g¼0

: ð22Þ
3. Results and discussion

Numerical results are presented for the case of a non-Newto-
nian power-law fluid of shear-thinning (n = 0.6) case along with
Newtonian fluid (n = 1.0) for the value of the Prandtl number
Pr = 100. Computations have been done for threshold shear rates
limits of c1 = 0.1 and c2 = 105 and for two values of the mixed con-
vection parameter Gr/Re2 (= 0.1 or 1.0). The non-dimensional vis-
cosity, D, given by the modified power-law correlation, which is
plotted in Fig. 2 as a function of the non-dimensional shear rate
c. The singularity experienced at the leading edge for the tradi-
tional power-law correlation has been successfully removed with-
out any difficulty by using the present modified power-law
correlation. Since the shear stress at the leading edge is inversely
proportional to

ffiffiffiffiffiffi
2n
p

it is infinite there, and D = (c2/c1)n�1 at the
leading edge.

The velocity distribution as a function of g at selected n locations
for the power-law index n = 0.6 are depicted in Fig. 3(a and b) for
Gr/Re2 = 0.1 and Gr/Re2 = 1.0, respectively. At n = 0, the velocity dis-
tribution is the forced convection similarity velocity profile. From
Figs. 3, it is observed that the natural convection has a significant
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influence on the flow field. For Gr/Re2 = 0.1, it takes longer distance
for the natural convection effect becomes dominant. On the other
hand, for Gr/Re2 = 1.0, the natural convection takes short distance
becomes the dominant mode.

The corresponding temperature distributions are plotted in
Fig. 4(a and b), respectively, for Gr/Re2 = 0.1 and Gr/Re2 = 1.0. For
Gr/Re2 = 0.1 at n = 100 the temperature distribution is larger than
any other n location since, near n = 100, the temperature distribu-
tion is enhanced due the combined mode of forced and natural
convection. On the other hand, the temperature distribution de-
creases as n increases in the case of Gr/Re2 = 1.0, which is expected
due to the natural convection mode.

The axial distribution of the skin-friction coefficient Cf(2n)1/2

and the Nusselt number Nu(2n)�1/2 are plotted in Fig. 5(a and b),
respectively, for Pr = 100, n = 0.6 and Gr/Re2 (= 0.1,1.0) with the
forced convection limit. These figures indicate that the forced con-
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vection solutions coincide with the full mixed convection solutions
for n 6 0.1. For comparison, we have provided only forced convec-
tion solutions because the forced convection and the mixed con-
vection length scales are same for the non-Newtonian fluids, but
it is difficult to compare with the mixed and free convection solu-
tions due to the different length scales [20]. They clearly show that
the free convection effects grow faster for larger Gr/Re2. The data
for the Newtonian fluids (n = 1) is plotted in Figs. 5 and 6 with
shear-thinning non-Newtonian fluid (n = 0.6) to contrast the differ-
ences of the two fluids. From this comparison it is seen that the
skin-friction coefficient decreases and the Nusselt number in-
creases for the shear-thinning fluid.

Fig. 6(a and b) describe, respectively, the skin-friction coeffi-
cient Cf(2n)1/2 and the Nusselt number Nu(2n)�1/2 for Pr = 100 and
n = 0.6 against the independent variable (Gr/Re2) n, which can cor-
relate Cf(2n)1/2 or Nu(2n)�1/2 into a single curve for all combination
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of Gr and Re for Newtonian fluids [21], but not for non-Newtonian
fluids. This indicates that the length scale introduced by the inter-
action of forced- and free convections is not the proper length scale
for non-Newtonian fluids; this is the difference between Newto-
nian and non-Newtonian fluids. Consequently, we use the length
scale associated with the power-law in the current study.
4. Conclusions

The proposed modified power-law correlation fits well with the
actual measurement of viscosities for non-Newtonian fluids; con-
sequently it does not contain physically unrealistic limits of zero
and infinite viscosity introduced into the boundary-layer formula-
tion by the traditional power-law model. The problems associated
with the non-removal singularity introduced by the traditional
power-law correlations do not exist for the modified power-law
correlation proposed in this paper. This means that the similarity
solution exists at the leading edge, which is the natural upstream
condition for the non-similar boundary-layer problem. Therefore,
the proposed modified power-law correlations can be used to
investigate other heat transfer problems for shear-thinning or
shear thickening non-Newtonian fluids on boundary-layers. The
fundamental mechanism that the effect of natural convection
eventually becomes dominant when the heating length is long is
also properly demonstrated in our computations. For the low
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heating case with Gr/Re2 = 0.1, the effect of natural convection has
not reached its fully developed stage at n = 1000.

The current study clearly indicates most measured data of
shear-dependent viscosity do not cover a complete range. So far,
we have only known one set of such data. We will use this partic-
ular set of data to determine the accuracy of various models, and
report our finding when it is ready.
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